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LETTER TO THE EDITOR 
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Abstract. On the basis of the strong link between limit theorems in probability theory and 
the mathematical formulation of critical phenomena, models for random phase screens 
are formulated in terms of Hamiltonian statistical mechanical systems. The probability 
distribution for the intensity of light scattered by the screen in the forward direction and 
far field is calculated in various cases. A criterion for the universal features contained in 
the intensity distribution is given. 

The study of the scattering of waves from rough objects has been of growing interest 
recently. In two dimensions a canonical model of such scattering is given by a phase 
screen [ 1,2]. This is a screen which instantaneously shifts the phase of a monochromatic 
wave impinging at r (a point on the screen) by + ( r ) .  It is an idealisation of the 
consequence of passage through a transparent medium of refractive index different 
from that of the surroundings and of possibly variable thickness. We should note that 
this is to be contrasted with an amplitude screen, such as a diffraction grating, in which 
the amplitude is modulated but not the phase. The idealised phase screen leaves the 
amplitude unaffected. 

It has been conjectured [3] that the form of the probability distribution of the 
intensity of the scattered wave falls into a limited set of classes. In separate work a 
fundamental connection [4,5] has been established between generalised limit theorems 
in probability theory and scaling ideas of critical phenomena. It seems reasonable to 
believe that there might be a connection between these two types of universal behaviour. 
It is our purpose here to suggest such a connection. 

In the usual formulations of phase screens [l, 21 the { 4 ( r ) }  are taken to be in a 
Gaussian distribution (but quenched for a particular screen). Since only phase diff eren- 
ces are relevant a complete probabilistic specification of the screen can then be given 
by the correlation function ( 4 ( r + r o ) 4 ( r o ) )  where ( ) refers to an average over the 
probability distribution. A power-law dependence of the correlation function on Iri 
denotes fractal behaviour. 

With any probability distribution P it is possible to associate a ‘Hamiltonian’ H 
through 

H = -log P ( 1 )  

on absorbing the ‘temperature’ into H. Statistical mechanics is the study of systems 
whose ‘field’ distribution is determined by equation (1) where H usually has some 
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microscopic physical origin. The study of such systems in the region of continuous 
phase transitions is a well developed branch of critical phenomena. Near such a 
transition the average correlations between fields at different spatial locations become 
long-ranged, whilst at the critical point the dependence on separation becomes power 
law. The analogy with the fractal phase screen is thus immediately suggested and it 
is natural therefore to enquire what statistical mechanics can tell one about phase 
screen expectations. Hence we will discuss systems characterised by Hamiltonians. 
We have freedom of choice of the functional relation between the fields (viz order 
parameters or ‘spins’) of the Hamiltonian and the phase shifts { 4 ( r ) } .  We can also 
(in principle) consider a number of different forms for the interactions in H. We can 
thereby obtain a variety of models for phase screen distributions. 

The usual phase screen model chooses for H a long-range interaction between r#~  

at different points which is determined by the inverse correlation function. We shall 
choose models which in the Hamiltonian formulation have a simpler form but which 
have equal a priori validity. In the Hamiltonian models fractality is recovered only at 
critical points but, as is well known, critical exponents and appropriate distribution 
functions normally depend only on a limited number of features of the actual Hamil- 
tonians, such as space and ‘spin’ dimensionalities. This behaviour is commonly known 
as universality. We shall see how this universality manifests itself in distributions of 
transmitted intensity in the phase screen problem, concentrating in the present letter 
on situations in which + ( r )  is allowed only a finite number of discrete values. Away 
from the critical point the screen is smooth, non-fractal and not completely universal, 
but nevertheless useful results can be obtained from the analogy. 

We shall find it convenient to discretise the space r for part of our specific analysis, 
but this is of no consequence in the regime of interest provided the ‘lattice’ spacing 
is taken to be small enough-it is well known to be irrelevant for critical behaviour 
where the characteristic correlation length is long and a similar situation applies to 
the screen (where one might envisage the lattice scale’as related to the inner scale). 

The first investigation [ 6 ]  of phase screens which allowed for random discrete 
fluctuations in the phase was due to Jakeman and Hoenders (JH). There, a model of 
a one-dimensional phase screen was developed with 

4 ( x )  = 4 0 +  &w ( 2 )  

where x is a position in the direction of variation across the screen, S ( x )  is a quenched 
random variable taking values *l and the crossings between S ( x )  = *1 are Poisson 
distributed. Physically this corresponds to transmission through a thin transparent 
sheet with random rectangular corrugations 

h ( x )  = ho+ h S ( x )  

& = kAnh 
(3) 

(4) 

where An is the refractive index difference and k is the wavevector. The discrete 
version of this has the screen consisting of elementary facets whose centre points are 
denoted by { x i } .  From a Hamiltonian point of view the Poisson distribution of JH is 
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where n[(S(x,)}] is the number of zero crossings in the configuration {S(xi)} with 

n[{-s(xi)ll= n[{S(xi)ll ( 6 )  

and W is the aperture of the screen. 
From statistical mechanics we have learnt that critical behaviour is governed only 

by considerations such as the dimensionality of the system, the symmetry of H and 
whether the interaction is long- or short-ranged relative to some measure. The H in 
equation (5) has a symmetry group Z2, i.e. it is invariant under the transformations 

S ( X i )  + -s(xi) V i. (7) 

In order to indicate the solvability possibilities offered by a Hamiltonian formulation 
and to illustrate the operation of universality we consider here other phase screen 
problems characterised by simple nearest-neighbour Hamiltonians, two with Z2 sym- 
metry, one with Z,. These Hamiltonians are 

Hi2' = - J E SiS, 

Hiz) = - J E ,"is,! 
Hi3' = -E Sy JUS! 

(8) 

(9) 

(10) 

where Z denotes summation over nearest neighbours, the Si take the values *l ,  the 
Si the values (0, *l}, the Sy are 3-vectors (1,0,0) and permutations, J, is given by 

- a  - a  

Jv=J[:i -; -;) (11) 

and the superscripts ( n )  indicate that the symmetry is Z,. For a =:, Hi3' is the 
three-state clock model. The Z, symmetry is immediately apparent for H y )  as written 
above but for application below it is convenient to re-express it in terms of S': 

H y ' =  -J E [l  +$ ( l+  a)SIS;+;( 1 + a ) S i 2 S j 2 -  ( 1  + a)(SIZ+ Sj')]. (12) 

We now consider the application to screens characterised by equation (2) with 
S(x)  now either two-valued, S(x)  = *l,  or three-valued, S(x)  = 0, izl, and distributed 
according to the above Hamiltonians. Restricting discussion to transmission in the 
forward direction in the Fraunhofer (far-field) region, the standard Huygens-Fresnel 
integral representation yields for the normalised scattered wave E 

(13) 

where .W is the number of discrete x points in the screen, S(x) is Si or SI as appropriate 
and the irrelevant overall phase shifts due to & and the unscattered phase shift have 
been ignored. The summation is over the width of the screen. Simplifications ensue 
from 

and 

E = W-' 1 exp[i$~(x,)] 
j 

exp(i4Sj) = cos 4 + isj sin 4 

exp(i4Sj) = 1 +is; sin 4 + ( ~ j > ~ ( c o s  4 - 1) 

s , , w  = w-' 1 sj 

(14) 

(15) 

leading naturally to formulation in terms of the block variables 

(16) 
j 
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= w-’ 1 s; 
S2,w = w-’ c (Sj)’. 

j 

j 

It is because of these simplifications that we discuss here phase shifts having a finite 
number of discrete values, rather than a continuum. 

The probability distributions for the intensity I corresponding to (13) are 
(a) for a system described by Hi2’, equation (8), 

where 

P ( S )  = ( a ( s - s I , w ) )  (20) 

dSl dS2 6{Z - S: sin2 6 - [1+ S,(cos 6 - l)]2}P(”(Sl,  S,) 

P ‘ ” ( S , ,  S,) = (S(S1- s; ,w)S(s,-  S 2 , W ) )  i = 2 , 3 .  (22) 

(b) for systems described by Hy’,  equation (9), and Hi3’, equation (12), 

P;”(Z) = (21) II 
where 

The subscripts and superscripts correspond to those in equations (8), (9) and (12) 
while the angle brackets denote averaging with respect to the probability distribution 
e 

For the problems that we are considering it is the P ( S )  and P(Sl,  S,)  which exhibit 
universality in an appropriate limit. Since the expressions for P( I) depend on 6 they 
are not themselves universal quantities, although they are made out of the universal 
quantities P (  S) and P (  SI, S,) in a direct way. It is easy to see that for a general system 
allowing for n discrete phase change possibilities joint probability distributions of 
block variables up to ( n  - 1)th order need to be considered. Other finite symmetry 
groups can be treated similarly. 

The analysis of the systems in equations (8)-(10) can proceed via the transfer 
matrix technique [7]. It is straightforward to show that in the thermodynamic limit, 
in which all other lengths become much greater than the discretisation length a, the 
distribution functions are characteristic functions of W/[ where 5 is the correlation 
function given by the asymptotic relation for the average for an infinite system: 

- H  where H is the corresponding Hamiltonian. 

(~14,)=((JiJ2>exp (-kl  -x,l/54 (23) 

where 4, is a canonical spin. For W / [  large there results the central limit Gaussian 
form, whereas for W/( small one obtains the following results. 

(i)  For the system characterised by H!2’ 

P ( S )  = t { (  1 - w/25)[6( 1 - s)  + 6(  1 + s ) ]  +t( w/&)e( 1 - s2)}+ o[( w/.g2] (24) 
where 0 denotes the standard Heaviside step function. JH obtained an equivalent P (  S). 

(ii) For Hi2’ and Hi3’ we find that 
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(In fact P C 2 )  can be obtained exactly as in reference [6] but for comparison with P ( 3 )  
below we prefer to exhibit only the perturbative form.) 

Moreover 

5 = t e x p ( 2 ~ )  

6 = f exp[J( 1 + a ) ]  

respectively. 6 large corresponds to the critical region, J + (or T +  0) in the present 
models. This is the regime of universality and consequently we would expect results 
identical to equations (24)-(26) for any short-range systems of the same symmetry. It 
is because both Hi2’ and Hy) have Z2 symmetry that P ( S )  is identical to P ( 2 ) ( S )  for 
the system described by Hy’ where 

P ( “ ( S )  = 1 P ( ’  I ) (  SI 9 S,)  dS2 i = 2, 3. (30) 

On the other hand, the Z 3  symmetry system, Hi3’,  has P ( 3 ) ( S )  different from P ( S )  and 
P ( 3 ) (  SI ,  S,) # PCz)(  SI ,  S 2 ) .  This leads to an intensity probability distribution which 
differs from that in the Z ,  symmetric theory. We thus see how the rigorous universal 
properties of distributions for the block spins imply a form of universality for the 
intensity distributions. The universality between systems can be further demonstrated 
by considering more general Hamiltonians such as the Blume-Emery-Griffiths Hamil- 
tonian [8], which contains the models considered above as special cases. 

In principle it is possible to extend the above ideas to space dimensions higher 
than one. The analysis is much harder and far from complete. It is, of course, possible 
to simulate the behaviour of the Hamiltonians in these dimensions on the computer 
and furthermore to take advantage of importance sampling techniques [9] such as that 
of Metropolis which have been developed for systems with few-body Hamiltonian 
interactions. In a future paper we will illustrate the applications of such a procedure 
to a two-dimensional telegraph screen. There are also possible approximate methods 
for analysis based on Wilson’s approximate recursion relation [IO] and the P ( S )  
extracted for a two-dimensional Ising system at criticality [ 111 is qualitatively in 
agreement with that obtained from Monte Carlo simulations [ 121. The intensity 
distribution can then be inferred. 

Finally, we comment further on why we have emphasised models in which the 
phase d~ is allowed only a discrete number of values. This is for two main reasons. 
Firstly, for such situations exp(idi) can be expressed as a finite polynomial in +i, 

requiring powers up to the ( n  - 1)th for an n-valued system, thereby enabling the 
intensity distribution to be expressed in terms of a joint distribution of block ‘spin’ 
powers. Secondly, when reformulated in terms of continuous variables, such models 
yield effective non-Gaussian distributions with (in general) non-trivial critical 
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behaviour; for example 

is equivalent to 

where 

K,K$ = JG’ 
j 

and is an unrestricted continuous variable. 

We are grateful to E Jakeman for discussions. One of us (JB) thanks RSRE, Malvern 
for the funding of his Research Assistantship at the Physics Department, Imperial 
College. 
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